## Max-Planck-Institut für Plasmaphysik



## Development and Benchmarking of a new Kinetic Code for Parallel Plasma Transport in the SOL and Divertor

A.V.Chankin<sup>1</sup>, D.P.Coster<sup>1</sup>, G.Meisl<sup>1,2</sup>

<sup>1</sup>Max-Planck-Institute for Plasma Physics, Garching, Germany <sup>2</sup>Physics Department of Munich Technical University, Germany

Acknowledgements: A.Bergmann, R.Bilato, H.-J. Klingshirn, K.Lackner, G.Pereverzev



#### **Outline**



- Introduction: basics features of the code
- Coulomb collision operator, E-field force
- Code tests for 0d2v problems
- Parallel heat conduction calculations
- Summary and outlook



## Basic features of KIPP: KInetic code for Plasma Periphery



- Basic version: only parallel <u>electron</u> kinetics. Emphasis on parallel heat flux  $q_{e||}$ . Justification:  $\chi_{e||} >> \chi_{i||}$ , + other reasons... Fluid equations for ions (kinetic later).
- 1D+ structure. Solves along field lines (now), later exchange (particle, heat) between flux surfaces. May use SOLPS grid.
- Perpendicular (radial) transport: standard B2 treatment using ad-hock transport coefficients  $\chi_{e\perp}$ ,  $\chi_{i\perp}$ ,  $D_{\perp}$ , viscosity etc. (drifts later; but No ion orbits! (2D effect)).
- Continuum Fokker-Planck code, 1D2V (v<sub>||</sub>,v<sub>⊥</sub>)
- Plasma quasi-neutrality assumed, electron equilibrium along B achieved by adjusting E<sub>||</sub>; Debye sheath not resolved, "logical sheath condition" at divertor targets
- Main ions, impurities, interaction with neutrals, plasma-wall interaction:
   to be handled by SOLPS (Eirene + B2)





## Ultimate goal: code integration into SOLPS as a module



- Strategy of kinetics' implementation: build up on available "infrastructure": preserve integrity of SOLPS by giving it essential control over conservation laws, plasma-neutral interaction etc.
- Kinetic module  $\rightarrow$  SOLPS(B2): realistic  $\chi_{e||}$ , thermoforce coeff., target heat  $\gamma_{e}$ , ionization/excitation coeff. (use full distribution function  $f_{e}$  at every step!)
  - F For predicting divertor conditions in next step devices, introducing kinetics is EQUALLY IMPORTANT as preserving State of The Art description of neutrals (Eirene) and other advanced features of SOLPS ⇒ kinetics should rather be *blended* into the existing code.



## Fokker-Planck equation



$$\frac{\partial f_{e}}{\partial t} + v_{\parallel} \left( \frac{\partial f_{e}}{\partial s_{\parallel}} \right) + \frac{q_{e} E_{\parallel}}{m_{e}} \left( \frac{\partial f_{e}}{\partial v_{\parallel}} \right) = \left( \frac{\partial f_{e}}{\partial t} \right)_{coll.} + sources$$

- $\bullet$  Two velocity variables:  $\,v_{\parallel}\,\,$  and  $\,\,v_{\perp}\text{-}$  gyro-averaged
- one spatial variable: s<sub>||</sub>



## Fokker-Planck equation (cont.)



#### Work in dimensionless parameters:

$$\widetilde{v}_{\parallel} = \frac{v_{\parallel}}{v_o}, \quad \widetilde{v}_{\perp} = \frac{v_{\perp}}{v_o}, \quad \text{where} \quad v_o = \sqrt{T_e/m_e} \quad \text{(also} \quad \widetilde{w} = \frac{v_{\perp}^2}{2 v_o^2} \quad \text{is used)}$$

$$\tilde{t} = \frac{t}{\tau_o}$$
, where  $\tau_o = \frac{4\pi v_o^3}{n_o \Lambda_o} \left(\frac{4\pi e^2}{m_e}\right)^{-2}$  - Trubnikov's "simplest relaxation time",

$$\widetilde{\mathbf{s}}_{\parallel} = \frac{\mathbf{s}_{\parallel}}{\mathbf{v}_{\mathbf{o}} \mathbf{\tau}_{\mathbf{o}}},$$

$$\tilde{E} = \frac{E_{\parallel}}{E_{o}}, \quad E_{o} = \frac{m_{e}v_{o}^{2}}{q_{e}\tau_{o}},$$

$$\tilde{f} = f \frac{v_o^3}{n_o}$$



## Fokker-Planck equation (cont.)



#### In dimensionless parameters:

$$\frac{\partial \widetilde{\mathbf{f}}}{\partial \widetilde{\mathbf{t}}} + \widetilde{\mathbf{v}}_{\parallel} \left( \frac{\partial \widetilde{\mathbf{f}}}{\partial \widetilde{\mathbf{s}}_{\parallel}} \right) - \widetilde{\mathbf{E}}_{\parallel} \left( \frac{\partial \widetilde{\mathbf{f}}}{\partial \widetilde{\mathbf{v}}_{\parallel}} \right) = \left( \frac{\partial \widetilde{\mathbf{f}}}{\partial \widetilde{\mathbf{t}}} \right)_{\text{coll.}}$$

- Operator-splitting scheme used to separate contributions to
  - $\widetilde{v}_{\parallel} \left( \frac{\partial \widetilde{f}}{\partial \widetilde{s}_{\parallel}} \right)$  "free-streaming"

$$-\widetilde{E}_{\parallel}\left(\frac{\partial \widetilde{f}}{\partial \widetilde{v}_{\parallel}}\right) \text{ parallel E-field force }$$

$$-\left(\frac{\partial \widetilde{f}}{\partial \widetilde{t}}\right) \text{ Coulomb collisions}$$

These two can be easily combined in one implicit scheme (see later)



## Full non-linear Coulomb collision operator



$$\frac{\partial \widetilde{\mathbf{f}}}{\partial \mathbf{t}} = \widetilde{\mathbf{C}}(\widetilde{\mathbf{f}}) = -\frac{\partial \widetilde{\Gamma}_{\widetilde{\mathbf{v}}_{\parallel}}}{\partial \widetilde{\mathbf{v}}_{\parallel}} - \frac{1}{\widetilde{\mathbf{v}}_{\perp}} \frac{\partial \widetilde{\Gamma}_{\widetilde{\mathbf{v}}_{\perp}}}{\partial \widetilde{\mathbf{v}}_{\perp}}, \text{ where}$$

D-coeff. are found by calculating Rosenbluth potentials and their derivatives



"dynamic friction"

pitch-angle scattering

diffusion



- Logarithmic mesh in  $~v_{\parallel},~v_{\perp}$  space to fit wide range of  $T_e$ 's
- 9-point stencil discretization scheme



 Implicit solution using MUMPS sparse matrix solver for both Fokker-Planck eq. and two Rosenbluth potentials (Poisson eqs. on 5-pt stencil) ⇒ MUMPS is used 3 times on each time step



## Tests for 0d2v problems (one spatial position)



- Maxwellian (also shifted along v<sub>||</sub>) can be well maintained; initial non-Maxwellian distribution relaxes to a Maxwellian; no instabilities seen
- Slow energy drift (loss of energy content due to energy nonconservation in e-e collisions); reduces linearly with increase in the number of velocity grid cells (mmax<sup>2</sup>) → 2nd order scheme
- Excellent match with Spitzer electrical conductivity for small E<sub>||</sub>
  and theoretical e-i energy equipartition rate (see later)



## Plasma electrical conductivity: fast convergence scheme



9-pt stencil for Coulomb collisions
3-pt stencil for E-field action
(1st order upwind scheme)



F During tests on electrical conductivity and runaway electron rate on typical grids in use, performance of the combined scheme was found to be of 2<sup>nd</sup> order (error ∞ mmax^2), despite E-field action is described by only 1<sup>st</sup> order scheme



## Electrical conductivity tests



- $\widetilde{E} = -0.002$ ,  $\approx 1\%$  of Dreicer's field
- uniform velocity grid;  $v_{max} = 10$  thermal velocities
- 130 time steps of  $\tau_{ei}$
- full non-linear coll. operator for e-e coll., linear coll. operator for e-i coll.

Electron velocity  $v_{e\parallel}$ =-j $_{\parallel}$ /en, in dimensionless parameters:  $\widetilde{v}_{\parallel} = K \frac{\widetilde{T}_e^{3/2}}{\widetilde{\Lambda}_c \widetilde{n}_e} \widetilde{E}$ 

 Good convergence to best available results on electrical conductivity with improving grid resolution

#### Relative error vs. Kaneko's result





## Electrical conductivity tests (cont.)



• Subtle feature of doubly peaked f<sub>e</sub>-function (extra peak – near  $v_{\parallel}$  =0, where ions sit) at large  $\widetilde{E}_{\parallel}=0.8$  (4×Dreicer's field) after  $\Delta t$  =  $2\tau_{ei}$ 



• Ion velocities << electron velocities ⇒
collision frequency for e-i collisions scales
as v^-3 down to very small values of v;
Extremely high e-i coll. rate for low energy
→ electrons "attemp" to create a local
Maxwellian around ion velocities</li>





## e-i energy equipartition (deuterium ions)



- Uniform velocity grid with  $v_{max}$ =10 electron thermal velocities, 400 cells in  $v_{ll}$  (-10 $v_{th}$  to + 10 $v_{th}$ ) and 200 cells in  $v_{\perp}$  (400x200 grid)
- Full non-linear Coulomb coll. operator for e-e collisions & linear coll. operator for e-i collisions
- Initial Maxwellian distributions for ions and electrons

# Relative deviation from Trubnikov's formula for $\Delta t=10^{-9} \tau_0$ for different Ti/Te ratios

 $(\tau_o$  – Trubnikov's "basic relaxation time", used for thermal electrons with  $v_e=\sqrt{(T_e/m_e)}$  colliding with species of mass  $\to Y$ )

Satisfactory agreement with theory





## e-i energy equipartition (cont.)



• Excellent agreement with theory for (initially) Maxwellian  $f_e$  and  $f_i$ . and smallest time step. However, equipartition rate drops by 2.3% over  $10\tau_0$  (e-i coll. times) compared to theory value, in line with theoretical expectations of large  $f_e$  – distortion at very low electron energies ~ Ti/400 (*Trubnikov*, 1965):

$$\frac{d\varepsilon_{\alpha}}{dt} = -\frac{2\varepsilon_{\alpha}}{\tau_{1}^{\alpha/\beta}(\varepsilon_{\alpha})} \left[ \frac{m_{\alpha}}{m_{\beta}} \mu(x_{\beta}) - \mu'(x_{\beta}) \right] \text{, where } \varepsilon_{\alpha} = \frac{m_{\alpha}v_{\alpha}^{2}}{2}$$



Fine structure of fe during energy equipartition with ions can be resolved by the code

-f1 – fe after 1e-3× $\tau$ o

- $f_2$  fe after  $1 \times \tau_0$
- f<sub>M</sub> Maxwellian
- all f's for  $v_{\perp}$ =0







#### Parallel heat conduction calculations



• Main challenge: classical (Spitzer-Härm/Braginskii) parallel heat conduction is determined by supra thermal particles, e.g., for electrons:  $v_e = 3 - 5\sqrt{T_e/m_e}$  their collisionality is dramatically reduced:

$$\frac{L_{\text{mfp-fast}}}{L_{\text{mfp-thermal}}} \approx \frac{(3.7^{2}/2T_{e} + 1T_{e})^{3/2}}{(3/2T_{e})^{3/2}} \times \frac{3.7v_{e,th}}{v_{e,th}} \approx 40$$

at v<sub>ell</sub>≈ 3.7v<sub>th</sub> and thermal v<sub>e</sub>⊥:

$$\exp\left(-\frac{m_e v^2}{2T_e}\right) \approx 4 \times 10^{-4}$$

• Fraction of heat-carrying electrons (estimate based on Braginski's  $\chi_{e||}$ ,  $v_{e||}$  = 3.7 $v_{th}$ ,  $v_{e\perp||}$  =  $v_{th}$  and  $\Delta v_{||}$  =  $v_{th}$ ): 1/3000



Contributions of electrons with different velocities v to the heat flux q<sub>e</sub>

F ~400x200 mesh in velocity space is required to adequately resolve  $f_e$ -function in the region of heat-carrying electrons with  $v\sim4v_{th}\rightarrow80000$  equations for an implicit scheme  $\Rightarrow$  large CPU time consumption.

For spatially varying T<sub>e</sub> (e.g. from 100 eV to 1 eV) this number will rise further.



## Chapman-Enskog explansion for qell



$$q_{e\parallel} = K \frac{\partial T_e}{\partial x} \left[ 1 + \delta_1 \left( \frac{\lambda_e}{2T_e} \frac{\partial T_e}{\partial x} \right)^2 + \delta_2 \left( \frac{\lambda_e^2}{4T_e^2} \frac{\partial^2 T_e}{\partial x^2} \right) + \delta_3 \left( \frac{\lambda_e}{2T_e} \right)^2 \left( \frac{\partial T_e}{\partial x} \right)^{-1} \frac{\partial^3 T_e}{\partial x^3} \right]$$

$$\delta_1 = [7.8(Z+1)+13.1]\times 10^3$$

$$\delta_2 = [4.88(Z+1) + 7.74] \times 10^3$$

$$\delta_3 = [0.3(Z+1) + 0.45] \times 10^3$$

[Luciani & Mora (1986)]

• Large values of  $\delta$ -coefficients imply significant deviations from the linear law:  $q_{e||} \propto \nabla_{||} T_e$ , already at rather modest ratios  $L_{||}/\lambda_e \sim 100$ 



## 1d2v calculations (variation along field line)



#### Simple test problem:

- 1d in real space; linear geometry, from stagnation point to target plate, where Debye sheath is formed
- 2d in velocity space full Coulomb coll. operator
- plasma ambipolarity maintained by adjusting E<sub>II</sub>
- ion density/temperature constant along  $s_{||} \to$  "cold electron injection" at target in lieu of ion target sink, in order to create  $\nabla_{||} T_e$





#### 1d2v calculations: numerical scheme



- Operator splitting scheme used to solve 1d2v problem, following Shoucri & Gagne (1978) (also used by Batishchev et al.):
  - ½ ∆t free-streaming
  - 1  $\Delta t$  Coulomb collisions +  $E_{||}$  -field force to kill momentum
  - ½ ∆t free-streaming

• for the free-streaming, explicit 2<sup>nd</sup> order schemes with upwinding are being tested



## Preliminary results on parallel heat conduction



- Braginski heat conduction coeff. is obtained for very high collisionalities: very long systems,  $s_{\parallel} \sim 1000\,\lambda_{ei}$ , are to be modelled, with  $T_e$  drop by  $\sim 10\%$   $\rightarrow$  very slow profile evolution
- $\chi_{e_{||}}$  was found to depend on  $\Delta t \to long$  run times required due to smallness of  $\Delta t$  (<<  $\tau_{ei}$ )



## Scheme implementation & CPU consumption



- Presently running on up to 64 processors on Linux cluster of IPP Garching.
   parallelisation using MPI. Number of spatial positions along field line: 63
- Processor No.0 (host) handles all operations for all spatial cells, except for Coulomb collisions (to be sped up in future by sharing also the free-streaming among processors)
- Coulomb collisions take large fraction of CPU time ⇒ one proc. → one spatial pos.
   Time mostly consumed by:
  - Solving Fokker-Planck equation
  - 2 Poisson's equations for Rosenbluth potentials (2 potentials)
  - Specifying boundary conditions for Poisson's equations (involves large array multiplications and summations)
  - sparse matrix sover MUMPS (MUltifrontal Massively Parallel sparce direct Solver) is used 3 times for each time step
- 1 time step, when running on 64 processors, for velocity grid 200x400 takes ≈ 3 sec



## Summary and outlook



- Basic tests/benchmarks have almost been completed: good results.
- Planning to start coupling it with SOLPS, beginning with simplest 1D geometry, for regimes with moderate T<sub>e</sub> drop from upstream to target; coupling algorithm has yet to be developed